85 research outputs found

    ESA: A CLIM Library for Writing Emacs-Style Applications

    Get PDF
    We describe ESA (for Emacs-Style Application), a library for writing applications with an Emacs look-and-feel within the Common Lisp Interface Manager. The ESA library takes advantage of the layered design of CLIM to provide a command loop that uses Emacs-style multi-keystroke command invocation. ESA supplies other functionality for writing such applications such as a minibuffer for invoking extended commands and for supplying command arguments, Emacs-style keyboard macros and numeric arguments, file and buffer management, and more. ESA is currently used in two major CLIM applications: the Climacs text editor (and the Drei text gadget integrated with the McCLIM implementation), and the Gsharp score editor. This paper describes the features provided by ESA, gives some detail about their implementation, and suggests avenues for further work

    Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust

    Get PDF
    Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation–catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties

    Endo-lysosomal protein concentrations in CSF from patients with frontotemporal dementia caused by CHMP2B mutation

    Get PDF
    INTRODUCTION: Increasing evidence implicates proteostatic dysfunction as an early event in the development of frontotemporal dementia (FTD). This study aimed to explore potential cerebrospinal fluid (CSF) biomarkers associated with the proteolytic systems in genetic FTD caused by CHMP2B mutation. METHODS: Combining solid-phase extraction and parallel reaction monitoring mass spectrometry, a panel of 47 peptides derived from 20 proteins was analyzed in CSF from 31 members of the Danish CHMP2B-FTD family. RESULTS: Compared with family controls, mutation carriers had significantly higher levels of complement C9, lysozyme and transcobalamin II, and lower levels of ubiquitin, cathepsin B, and amyloid precursor protein. DISCUSSION: Lower CSF ubiquitin concentrations in CHMP2B mutation carriers indicate that ubiquitin levels relate to the specific disease pathology, rather than all-cause neurodegeneration. Increased lysozyme and complement proteins may indicate innate immune activation. Altered levels of amyloid precursor protein and cathepsins have previously been associated with impaired lysosomal proteolysis in FTD. HIGHLIGHTS: CSF markers of proteostasis were explored in CHMP2B-mediated frontotemporal dementia (FTD).31 members of the Danish CHMP2B-FTD family were included.We used solid-phase extraction and parallel reaction monitoring mass spectrometry.Six protein levels were significantly altered in CHMP2B-FTD compared with controls.Lower CSF ubiquitin levels in patients suggest association with disease mechanisms
    corecore